METHODS OF COMPUTING A LARGE NUMBER OF QUANTILES FROM AN AGGREGATE LOSS DISTRIBUTION

MAHESH V. JOSHI, Ph.D. ADVANCED ANALYTICS R&D SAS INSTITUTE INC.

LOSS DISTRIBUTION APPROACH PROCESS

AGGREGATE LOSS MODELING COMPOUND DISTRIBUTION MODEL (CDM)

- Collective risk model
 - $\{X_i\}$: iid random variables for severity
 - N: frequency random variable (independent of all $\{X_i\}$)
 - Aggregate loss is a random variable $S = \sum_{i=1}^{N} X_i$
- What is the probability distribution of S? The cumulative distribution function (CDF) of S is

$$F_S(s) = \sum_{n=0}^{\infty} \Pr(N=n). F_X^{*n}(x)$$

Closed form solution is rarely available; hence, simulation method is used

ECONOMIC CAPITAL MODELING ENTERPRISE-WIDE AGGREGATE LOSS

- Need to account for correlation between different lines of business or risk categories
- Copulas help identify the dependence structure

ECONOMIC CAPITAL MODELING AGGRE

AGGREGATING LOSSES FROM DIFFERENT UNITS

ECONOMIC CAPITAL MODELING

COMBINING COPULA AND CDM SIMULATIONS

	RC1	RC2	RC3		RC1	RC2	RC3		Total Loss
	0.3	0.6	0.2		$F_1^{-1}(0.3)$	$F_2^{-1}(0.6)$	$F_3^{-1}(0.2)$		$\sum_{j=1}^{3} F_{j}^{-1}(u_{1,j})$
	0.5	0.25	0.7		$F_1^{-1}(0.5)$	$F_2^{-1}(0.25)$	$F_3^{-1}(0.7)$		$\sum_{j=1}^{3} F_{j}^{-1}(u_{2,j})$
$\left\{ \right.$				-				-	
	0.75	0.5	0.6		$F_1^{-1}(0.75)$	$F_2^{-1}(0.5)$	$F_3^{-1}(0.6)$		$\sum_{j=1}^{3} F_{j}^{-1}(u_{N-1,j})$
	0.2	0.9	0.3		$F_1^{-1}(0.2)$	$F_2^{-1}(0.9)$	$F_3^{-1}(0.3)$		$\sum_{j=1}^{3} F_{j}^{-1}(u_{N,j})$

- For each risk category (RC), F_j is the CDF of CDM
- N is typically in millions

Ν

- Need to compute a large number of percentiles from a large empirical sample of CDM; there are multiple such CDMs (one for each RC)
- The empirical sample might be stored in a distributed fashion on multiple computers if simulation was performed on multiple computers
- CDM sample of each RC might need to be stored for future use; storing multiple large, distributed samples might be expensive

COMPUTING CDM PARALLEL AND DISTRIBUTED CDM SIMULATION

COMPUTING CDM PERCENTILES AN EMPIRICAL APPROACH

- Compute the EDF of CDM sample and store it along with the aggregate loss values. Then, sort the required percentiles in ascending order and lookup the desired percentiles in the EDF data structure
- If the CDM sample is distributed across multiple computers
 - Bring the sample on one machine and follow first bullet's method, or
 - Employ a sophisticated distributed percentile computation algorithm that does not require bringing the CDM sample on one node

COMPUTING CDM PERCENTILES

A PARAMETRIC APPROXIMATION APPROACH

- Fit a parametric probability distribution to CDM's empirical sample
- For more accurate percentile computations, fit the parametric distribution by using a minimum distance estimator (Cramér-von Mises)
 - Attempt to minimize distance between EDF (nonparametric) and CDF (parametric)

CDM'S PARAMETRIC APPROXIMATION

- Mixture distribution might be more appropriate
 - Body-tail mixture
 - A finite mixture of multiple components, each with a distribution from the same of different parametric families

 $f(x; \Theta) = \sum_{i} p_{i} g_{i}(x; \Theta_{i})$ $F(x; \Theta) = \sum_{i} p_{i} G_{i}(x; \Theta_{i})$ $\sum_{i} p_{i} = 1$

 Zero-inflated family (mixture of a Bernoulli distribution for 0 and any parametric family for the non-0 values), because CDM sample typically contains lots of 0s

> $f(0; \Theta) = \phi + (1 - \phi)h(0; \Theta) \qquad F(0; \Theta) = \phi + (1 - \phi)H(0; \Theta)$ $f(x; \Theta) = (1 - \phi)h(x; \Theta) \qquad F(x; \Theta) = \phi + (1 - \phi)H(x; \Theta)$

EXPERIMENTS PARAMETRIC APPROXIMATION

- Case 1: Compounding of Poisson frequency and gamma severity
- Case 2: Compounding of negative binomial frequency and lognormal severity
- Tools used: SAS/ETS[®] and SAS[®] High Performance Econometrics
 PROC COUNTREG: fits frequency models
 - PROC SEVERITY: fits <u>any</u> continuous distribution models for severity while accounting for censoring, truncation, and regression effects.
 - PROC HPSEVERITY: High performance version that can use a grid of multiple computers to speed up estimation, and can work on distributed data
 - PROC HPCDM: estimates compound distribution model by potentially using a grid of multiple computers to generate large, distributed empirical sample

EXPERIMENTS CASE 1 (POISSON FREQUENCY X GAMMA SEVERITY)

- The numbers show values of Cramervon Mises objective function defined in PROC HPSEVERITY as cvmobj = (_EDF_(y) - _CDF_(y))**2
- Tweedie is the best among the several candidates
 - Fitted value of index parameter 'p' is 1.333; for 1 compound Poisson distribution
- Zero-inflated distributions perform consistently and significantly better than their *base* counterparts

Gamma	257.24872		zigamma	1.28357	
Exp	277.64059		ziexp	172.07706	
Burr	293.15087	7 zilognmi×5 7 ziburr		0.04437	^
lognmix4	205.99310	*	zilognmix4	18.18846	
lognmix3	214.21028		zilognmi×3	23.32376	
logngpd	224.93052		zilogomiy2	20 42522	

EXPERIMENTS

CASE 2 (NEGATIVE BINOMIAL FREQUENCY X LOGNORMAL SEVERITY)

- Zero-inflated mixture of four lognormal distributions is the best among several candidates
- Again, zero-inflated distributions perform consistently and significantly better than their *base* counterparts

logngpd	32375				
lognmi×2	32667		zilognmi×2	0.00425	Τ
lognmi×3	32376		zilognmi×3	0.14113	
lognmi×4	32372	*	zilognmi×4	0.00381 *	>
lognmi×5	32372		zilognmi×5	0.17993	
Burn	32391		ziburr	0.21136	
Exp	32933		ziexp	1.19346	
Gamma	32379		zigamma	1.07195	ļ
Igauss	32429		ziigauss	1.24199	
Logn	32397		zilogn	0.22983	
Pareto	32412		zipareto	0.61064	Ţ
Gpd	32412		zigpd	0.61064	
Weibull	34028		ziweibull	0.98002	

tweedie

1.14085

- Pros:
 - Relatively easy to implement if entire sample is brought on one computer
 - Might be faster with sorted traversal of the EDF data structure
 - Always applicable!
- Cons:
 - Need to store the entire sample for future use (non-parsimony)
 - Might not be faster if the sample is distributed and it is prohibitively expensive to bring it all on one computer

COMPARE APPROACHES PARAMETRIC APPROXIMATION

- Pros:
 - Parsimony: compresses the empirical sample into a few set of numbers (parameters)
 - Might be faster if approximating distribution can be found relatively quickly
 - Parallel nonlinear optimization algorithms can be employed to make estimation quicker when the CDM sample is distributed on multiple computers
 - Cost of estimation can be amortized over large number of quantile computations if quantiles are computable relatively quickly
- Cons:
 - Might not be applicable if satisfactory approximating distribution cannot be found
 - Might not be faster if search for an accurate approximating distribution takes longer
 - Might not be faster if the quantiles are expensive to compute (for mixture distribution, quantile often needs to be computed by numeric inversion of CDF).

SUMMARY

- Presented the problem that requires computation of large number of quantiles from multiple aggregate loss distributions
- Presented empirical and parametric approximation methods for computing percentiles
- Each method is worth trying depending on the scale of the problem and the ease with which approximating distribution can be found

contact: mahesh.joshi@sas.com

