METHODS OF COMPUTING A LARGE
NUMBER OF QUANTILES FROM AN
AGGREGATE LOSS DISTRIBUTION

MAHESH V. JOSHI, Ph.D.

ADVANCED ANALYTICS R&D
SAS INSTITUTE INC.

)
o
7

‘THE POWER TO KNOW.



LOSS DISTRIBUTION
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AGGREGATE LOSS

MODELING COMPOUND DISTRIBUTION MODEL (CDM)

- Collective risk model
- {X;}: iid random variables for severity
- N: frequency random variable (independent of all {X})

- Aggregate loss is a random variable S = YV X;
- What is the probability distribution of S? The cumulative distribution function
(CDF) of Siis

Fs(s) = z Pr(N = n).Fy"(x)
n=0

- Closed form solution is rarely available; hence, simulation method is used
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ECONOMIC CAPITAL

MODELING ENTERPRISE-WIDE AGGREGATE LOSS

= Need to account for
correlation between
different lines of business
or risk categories

= Copulas help identify the
dependence structure




ECONOMIC CAPITAL
MODELING

AGGREGATING LOSSES FROM DIFFERENT UNITS

Business Unit or Risk Category K

Business Unit or Risk Category 2

Business Unit or Risk Category 1

Collect Loss Data and
External Effect Data

Split into Frequency
and Severity Data

Estimate Estimate
Frequency Model Severity Model

Simulate Compound
Distribution Model

Match each risk category’s
loss data (e.g. aggregate
losses in a time interval)

Estimate Dependency
Model (Copula)

Simulate Copula

Marginal Estimate quantiles from

Distributions

each risk category’s CDM

Aggregate Risk and
Compute Risk Measures
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ECONOMIC CAPITAL
MODELING
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COMBINING COPULA AND CDM SIMULATIONS

Fr'(0.3) F;'(0.6) F;%(0.2) Z}?"=1F}'_1(u1,j)
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- For each risk category (RC), F; is the CDF of CDM
- N is typically in millions
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COMPUTING CDM

PERCENTILES CHALLENGES

- Need to compute a large number of percentiles from a large empirical sample
of CDM; there are multiple such CDMs (one for each RC)

- The empirical sample might be stored in a distributed fashion on multiple
computers if simulation was performed on multiple computers

- CDM sample of each RC might need to be stored for future use; storing
multiple large, distributed samples might be expensive
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COMPUTING CDM PARALLEL AND DISTRIBUTED CDM SIMULATION

PERCENTILES
Client Master Grid Worker Grid
Computer Node Nodes

Frequency & Inter-node Communication

Severity Models,
User Parameters Data Access Layer

0900 88-C

Empirical Sample of Co\rfnpound Distribution is
stored in-memory, in a Distributed Database, or
in a Distributed File System (e.g. Hadoop DFS)
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COMPUTING CDM
PERCENTILES AN EMPIRICAL APPROACH

- Compute the EDF of CDM sample and store it along with the aggregate loss
values. Then, sort the required percentiles in ascending order and lookup the
desired percentiles in the EDF data structure

- If the CDM sample is distributed across multiple computers

- Bring the sample on one machine and follow first bullet’s method, or

- Employ a sophisticated distributed percentile computation algorithm that does not
require bringing the CDM sample on one node
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COMPUTING CDM

PERCENTILES A PARAMETRIC APPROXIMATION APPROACH

- Fit a parametric probability distribution to CDM’s empirical sample
- For more accurate percentile computations, fit the parametric distribution by

using a minimum distance estimator (Cramér-von Mises)
- Attempt to minimize distance between EDF (nonparametric) and CDF (parametric)
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CDM’S PARAMETRIC
APPROXIMATION APPROXIMATING DISTRIBUTIONS TO TRY

- Mixture distribution might be more appropriate
- Body-tail mixture
- A finite mixture of multiple components, each with a distribution from the
same of different parametric families
f(x; 0) = X;pigi(x; 6;) F(x;0) = X;piGi(x; ©;) 2ipi=1
- Zero-inflated family (mixture of a Bernoulli distribution for O and any
parametric family for the non-0 values), because CDM sample typically
contains lots of Os
f(0;0) =¢+(1—¢)h(0;0) F(0;0) =¢+ (1—¢p)H(0;06)
f(x;0) = (1 — ¢)h(x;0) F(x;0) =¢ + (1 - ¢)H(x;0)
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EXPERIMENTS PARAMETRIC APPROXIMATION

- Case 1: Compounding of Poisson frequency and gamma severity
- Case 2: Compounding of negative binomial frequency and lognormal

severity
. Tools used: SAS/ETS® and SAS® High Performance Econometrics
- PROC COUNTREG: fits frequency models
- PROC SEVERITY: fits any continuous distribution models for severity while

accounting for censoring, truncation, and regression effects.
- PROC HPSEVERITY: High performance version that can use a grid of multiple
computers to speed up estimation, and can work on distributed data
- PROC HPCDM: estimates compound distribution model by potentially using
a grid of multiple computers to generate large, distributed empirical sample
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EXPERIMENTS CASE 1 (POISSON FREQUENCY X GAMMA SEVERITY)

- The numbers show values of Cramer- logngpd | 224.93062
von Mises objective function defined in ~ /'eenm*® | =927012 | |jeleanmia | 2043533

logrirni =3 21421028 zilogrimi =3 23.323ITE
PROC HPSEVERITY as
cvmobj = ( EDF_(y) - _CDF_(y))**2

lagrimixd 20599310 | * | zilagnmixd 1818246

logrirmi =5 293 18687 zilognimmi x5 004437
- Tweedie is the best among the several Burr 25075467 | || ziburr 031210
candidates Exp 277 505D ziexp 17207706
- Fitted value of index parameter ‘p’ is S =07 =% | | ISR 128367
1.333; for 1 < p < 2, Tweedie is a geuss  [etetone | ||[Eleeiss | AR
compound Poisson distribution - et ZTIDQ; 1?:::::
. Zero-inflated distributions perform T e i e Ee

consistently and significantly better than ... 2s062072 | | siwsioun S

their base counterparts ( >
tweedie 0.04079
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CASE 2 (NEGATIVE BINOMIAL FREQUENCY X LOGNORMAL

EXPERIMENTS
SEVERITY)
lagngpd 32375
lagrimi =2 J2EET zilognmix=Z2 | 0.00425
longrimmi =3 2376 zilognmi=32 | 014113

- Zero-inflated mixture of four lognormal oanmixa | 52972 CGlognmixd | 030351 )

. . . . logrri =S F2aTE Zilognmi=5 | 017993

distributions is the best among several : :
] Eurr a2z ziburr 021135
Cand |dateS Exp 22833 Tiexp 1.19345
- Again, zero-inflated distributions Gamma | 32379 zigamma | 107135
perform consistently and significantly i il N i Bt
. Logn 2397 zilogn 0229832
better than their base counterparts rarcts | o242 | | |sarets | 0.01082
Gpd 2329412 zigpd 06106
ez bl | a0 ziweibull 092002

tweadie 114085
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COMPARE

APPROACHES EMPIRICAL METHOD

- Pros:
- Relatively easy to implement if entire sample is brought on one computer
- Might be faster with sorted traversal of the EDF data structure
- Always applicable!
- Cons:
- Need to store the entire sample for future use (non-parsimony)
- Might not be faster if the sample is distributed and it is prohibitively expensive to bring
it all on one computer
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COMPARE
APPROACHES PARAMETRIC APPROXIMATION

- Pros:
- Parsimony. compresses the empirical sample into a few set of numbers (parameters)
- Might be faster if approximating distribution can be found relatively quickly
- Parallel nonlinear optimization algorithms can be employed to make estimation
quicker when the CDM sample is distributed on multiple computers
- Cost of estimation can be amortized over large number of quantile computations if
qguantiles are computable relatively quickly
- Cons:
- Might not be applicable if satisfactory approximating distribution cannot be found
- Might not be faster if search for an accurate approximating distribution takes longer
- Might not be faster if the quantiles are expensive to compute (for mixture distribution,
guantile often needs to be computed by numeric inversion of CDF).
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SUMMARY

- Presented the problem that requires computation of large number of
guantiles from multiple aggregate loss distributions

- Presented empirical and parametric approximation methods for
computing percentiles

- Each method is worth trying depending on the scale of the problem
and the ease with which approximating distribution can be found

- contact: mahesh.joshi@sas.com




